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As global climate change and variability drive shifts in species’ distributions, ecological 
communities are being reorganized. One approach to understand community change 
in response to climate change has been to characterize communities by a collective 
thermal preference, or community temperature index (CTI), and then to compare 
changes in CTI with changes in temperature. However, important questions remain 
about whether and how responsive communities are to changes in their local thermal 
environments. We used CTI to analyze changes in 160 marine assemblages (fish and 
invertebrates) across the rapidly-changing Northeast U.S. Continental Shelf Large 
Marine Ecosystem and calculated expected community change based on historical 
relationships between species presence and temperature from a separate training 
dataset. We then compared interannual and long-term temperature changes with 
expected community responses and observed community responses over both temporal 
scales. For these marine communities, we found that community composition as 
well as composition changes through time could be explained by species associations 
with bottom temperature. Individual species had non-linear responses to changes in 
temperature, and these nonlinearities scaled up to a nonlinear relationship between 
CTI and temperature. On average, CTI increased by 0.36°C (95% CI: 0.34–0.38°C) 
for every 1°C increase in bottom temperature, but the relationship between CTI and 
temperature also depended on community composition. In addition, communities 
responded more strongly to interannual variation than to long-term trends in 
temperature. We recommend that future research into climate-driven community 
change accounts for nonlinear responses and examines ecological responses across a 
range of temporal and geographical scales.

Keywords: climate change, community assembly, marine ecology

Introduction

Anthropogenic climate change is altering nearly every natural environment across the 
planet (Parmesan and Yohe 2003, Cheung et al. 2013, IPCC 2014). Unprecedented 
trends and fluctuations in the climate are contributing to complex and unanticipated 
changes in biotic and abiotic environments (Walther et al. 2002, Hoegh-Guldberg and 
Bruno 2010, Urban et al. 2012, IPCC 2014). Recent research has shown that many 
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species are responding to climate change by shifting their 
distributions (Parmesan et al. 1999, Davis and Shaw 2001, 
Parmesan and Yohe 2003, Kleisner et al. 2016). These distri-
bution shifts have often followed the same trajectories as the 
species’ preferred climates (Parmesan et al. 1999, Dulvy et al. 
2008, Bertrand et al. 2011, Pinsky et al. 2013).

However, these same studies have documented substan-
tial heterogeneity in the direction and magnitude of each 
species’ response to climate change, even among species 
within the same assemblage (Dulvy et al. 2008, Moritz et al. 
2008, Sunday  et  al. 2012, Kleisner  et  al. 2016). Unequal 
responses by coincident species may be due to differences 
in their thermal performance curve: an increase in tem-
perature may be detrimental for a cold-adapted species, but 
beneficial for a warm-adapted species in the same location 
(Menéndez  et  al. 2006, Moritz  et  al. 2008, Bertrand  et  al. 
2011, Kordas et al. 2011). In addition to long-term changes 
in mean temperature, fluctuations in temperature can also 
play an important role in determining species and commu-
nity responses to change (Paaijmans et al. 2013, Vasseur et al. 
2014, Morley et al. 2017).

As climate change drives increases in temperature in many 
coastal regions (IPCC 2014), we expect that communities 
will also change as in-migrating or growing populations of 
warm-adapted species outcompete or replace out-migrating 
and shrinking populations of cold-adapted species. Species 
turnover from cold-adapted to warm-adapted species causes 
a change in the community’s mean thermal preference, 
also known as community temperature index (CTI). CTI 
has been used in a variety of recent studies as a metric for 
evaluating how well communities are suited to their thermal 
environments and for comparing community changes on 
regional and global scales (Devictor et al. 2008, Cheung et al. 
2013, Zografou et al. 2014, Stuart-Smith et al. 2015). While 
we may broadly expect communities and CTIs to change in 
response to temperature change, we have a poor understand-
ing of the shape of those responses and the rates at which 
they will change (Menge and Olson 1990, Levin 1992, 
Leibold et al. 2004).

Previous studies have measured community response to 
temperature change at regional and global scales by directly 
comparing CTI and temperature. This comparison is based 
on the (sometimes implicit) assumption that species turn-
over and community change should occur linearly and one-
to-one with temperature change if dispersal or other factors 
don’t prevent or alter such community change (e.g. Fig. 1b)  
(Devictor  et  al. 2008, 2012, Cheung  et  al. 2013, Bowler 
and Böhning-Gaese 2017). However, species’ thermal per-
formance curves are typically dome-shaped functions of 
temperature (Huey and Stevenson 1979), and these curves 
are both asymmetric and variable among species. Changes 
in environmental temperature may thus lead to nonlinear 
responses in abundance among species (Pörtner and Knust 
2007, Deutsch et al. 2008) (e.g. Fig. 1d, f ). Since communi-
ties are comprised of multiple species with unique thermal 
performance curves, we cannot necessarily assume that CTI 

and temperature change will be linearly correlated. In addi-
tion, marine communities tend to be ‘thermally biased’, or 
dominated by species that have higher or lower thermal pref-
erences than their local environments (Stuart-Smith  et  al. 
2015), which could lead to communities lagging environ-
mental changes until threshold-crossing temperature change 
drives a rapid community-wide shift. This combination of 
asymmetrical thermal performance curves and commu-
nity thermal biases suggests that CTI may change nonlin-
early in response to temperature change (Fig. 1). With the 
increasing use of CTI for measuring community response to 
climate change, a quantitative analysis of the effects of these 
nonlinearities is needed.

We chose to examine community responses to tempera-
ture change in the northeast U.S. continental shelf, a large 
marine ecosystem (LME) that has warmed over the last three 
decades (0–0.03°C yr–1) (Friedland and Hare 2007, Belkin 
2009, Shearman and Lentz 2009). This change has led to 
a general shift in isotherms and in the species assemblage 
towards the northeast (Pinsky  et  al. 2013). Previous stud-
ies have also found that warming has led to changes in the 
distribution of several large species assemblages within the 
LME (Kleisner et al. 2016), as well as to changes in species 
composition in four large sub-regions (Lucey and Nye 2010). 
While these large-scale and long-term climate and ecological 
changes are evident across the region, species interactions and 
communities are formed at finer spatial scales, and it is not 
clear whether the same responses to climate change can be 
detected at a finer scale.

In this manuscript, we investigated 1) how marine com-
munities of fish and invertebrates have changed over the last 
25 yr, as quantified by changes in CTI, 2) how these marine 
communities would have changed if they were only respond-
ing to temperature, and 3) whether temperature is an impor-
tant factor driving these communities to change over either 
decadal or interannual time-scales. To answer these questions, 
we evaluated temperature and community change in 160 
spring and fall assemblages, compared interannual variations 
and long-term trends in each, and analyzed whether marine 
communities in this region are changing at the same rates and 
in the same direction as their local thermal environments.

Material and methods

Survey method and study extent

We used data from the Northeast Fisheries Science Center 
(NEFSC) biannual (spring: March–May, fall: September–
November) stratified random bottom trawl surveys of the 
northeast U.S. continental shelf. This ecological survey 
captures a wide range of demersal species and some pelagic 
species, including groundfishes, crustaceans, sharks, herring, 
and squid (Supplementary material Appendix 1 Table A1). 
The survey design divided the survey area into 198 strata 
(Fig. 2) (methodology described in Azarovitz 1981). Survey 
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strata represented the smallest spatial units of the statistical 
sampling design. Strata ranged in area from 178 to 13 956 km2 
(median 2503 km2), and in mean depth from 10 to 472 m. 
The median range of depths within a stratum was 36.5 m. 
Each trawl recorded the presence of each species, trawl depth, 
in-situ bottom temperature, and other data. Each year, the 
survey trawls no more than 0.005% of the northeast U.S 
continental shelf area, having a negligible but non-zero effect 
on community composition.

The timing of the fall survey changed over time from the 
1960s to the 1980s, which could create artificial trends in 
observed temperatures and communities (Supplementary 
material Appendix 1 Fig. A1). To avoid this possibility, we 
restricted our analysis of temperature and community change 
to 1990–2014.

Species temperature index (STI) and community 
temperature index (CTI) calculations

As a measure of realized thermal niche, we fit a statistical 
model to the relationship between species presence and bot-
tom temperature. In order to estimate more complete thermal 
distributions, our training dataset was 97 535 bottom trawl 
survey hauls with spatial coverage from the Gulf of Mexico 
to Newfoundland across multiple seasons (Pinsky et al. 2013, 
Morley et al. 2017, Selden et al. 2018). Our training dataset 
therefore covered a much wider geographic region than do the 
time-series of interest in this paper. While some of our focal 
species have geographical ranges that extend beyond those 
of these surveys, the most common species in the northeast 
U.S. had thermal ranges that fell well within the range of 

Figure 1. If species’ thermal distribution curves are uniform in shape, height, and closely spaced, (a), expected CTI changes are linear and 
1:1 with temperature (b), assuming other ecological factors remain constant. If thermal distribution curves are uniform but spaced farther 
part (c), CTI changes in a stepwise fashion (d). However, species’ thermal distributions are rarely symmetrical, have varying degrees of 
overlap, and include both rare and common species (e), suggesting that CTI may not change linearly or 1:1 with temperature (f ).
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temperatures sampled by this full database of surveys (–2 to 
33°C). To prevent overlap with our subsequent analysis, all 
data from the northeast region after 1989 were omitted from 
this training dataset.

For each of the 260 most common species found in at least 
250 trawls in the northeast U.S. bottom trawl survey 1968–
1989 (Supplementary material Appendix 1 Table A1), we fit 
a generalized additive model (GAM) (Hastie and Tibshirani 
1990) to presence and absence data using binomial errors 
with the ‘mgcv’ package (Wood 2011) in R (R Core Team). 
Predictor variables included in-situ bottom temperature, 
benthic rugosity, sediment grain size and a categorical indica-
tor for survey region to account for differences in method-
ology and catchability among surveys, following the species 
distribution modeling methods of Morley  et  al. (2018). 
Briefly, we calculated seafloor rugosity as the mean of the 
absolute differences between a given grid cell depth and the 
depths of the eight surrounding cells using GEBCO bathy-
metric data (Becker  et  al. 2009). Grain size was measured 

using the Wentworth Phi scale, where lower values indicate 
coarser sediments and higher values indicate finer sediments 
(Morley  et  al. 2018). The inclusion of non-temperature 
effects in the models helped to account for other influences 
on species distributions and therefore helped to refine the fit 
of the temperature effect. In order to prevent overfitting of 
the GAMs, gamma (which acts as a penalty against model 
complexity) was set to the log of the number of observations 
divided by two (Wood 2006). For each species, we fit a single 
GAM, which allowed us to calculate comprehensive thermal 
distributions ranging from 0 to 35°C. The species temper-
ature index (STI) was then calculated as the median tem-
perature of the modeled probability of presence with other 
predictor variables held constant. Across the 260 most com-
mon fishes and invertebrates, species temperature index (STI) 
values ranged from –0.3°C to 30.5°C and roughly clumped 
into guilds of species above and below 15°C (Supplementary 
material Appendix 1 Table A1, Fig. A2). These guilds roughly 
correspond to the subpolar (< 14°C), temperate (14–23°C), 

Figure 2. Map of survey area with strata colored by magnitude of long-term change in bottom temperature in spring (a) and fall (b), and 
by long-term change in CTI in spring (c) and fall (d).
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and tropical (> 23°C) guilds identified by Stuart-Smith et al. 
(2015), though our data do not show a clear break at 23°C.

We defined a ‘community’ as all species present in tows in 
a stratum in the same season and year. CTI was calculated in 
each stratum, season and year from 1990–2014 as the aver-
age of STIs of each species present. This definition does not 
account for differences in species abundance, but a sensitiv-
ity test weighting by abundance revealed equivalent results to 
those we present in this paper.

Temperature-only expectations for CTI change

Given that the shapes of species’ thermal distributions may 
cause communities to respond to temperature nonlinearly, 
we calculated the ‘idealized’ community for each temperature 
in the dataset. This model assumed that there are no barriers 
to dispersal and that each species would occupy the commu-
nity in proportion to the probability density at that tempera-
ture on its respective thermal distribution curve. In the model 
communities, we calculated the CTI as the mean of the STIs 
of each species, weighted by their GAM-predicted prob-
ability of presence at that temperature (see example Fig. 1). 
This model demonstrates how CTI would change if change 
in temperature was the only driver. Once these temperature-
only CTI expectations were calculated for each temperature, 
we matched observed bottom temperatures with the tem-
perature-only model CTI expectations to generate expected-
CTI time series for each stratum and season.

Observed bottom temperature and CTI

Of the 198 strata sampled in the trawl survey, 80 had CTI 
and bottom temperature data available in at least 20 of the 
25 yr in both spring and fall from 1990–2014 (for a total of 
160 time series). For each season and year, we aggregated all 
trawls within each stratum and calculated mean bottom tem-
perature and CTI. In years when bottom temperature was 
not available for a stratum, we omitted CTI for those same 
years for consistency.

To evaluate how well CTI followed bottom temperature, 
we analyzed the relationship between the two on both 
long-term and interannual time scales in the testing data-
set (1990–2014). We therefore conducted several analyses: 
1) to evaluate static patterns, we compared time-averaged 
bottom temperature and CTI values with a linear regression 
model. 2) To evaluate the overall correlation of changes in 
temperature and CTI, we fit linear mixed-effects models to 
the biannual bottom temperature and observed CTI data. 
We used observed CTI as the response variable, bottom tem-
perature as the fixed effect, and survey (fall vs spring) nested 
within stratum as random effects. We evaluated statistical 
significance of the temperature term by fitting a null model 
without bottom temperature and comparing the two mod-
els with a likelihood ratio test, as implemented in the ‘lmer’ 
package in R (Bates et al. 2015). We also evaluated a model 
where the fixed effect was the temperature-only expectation 
of CTI. 3) To focus specifically on long-term trends, we fit 

linear models to each stratum time-series of bottom tempera-
ture, of temperature-only CTI expectation, and of observed 
CTI from 1990–2014. We then compared the slopes of these 
bottom temperature and CTI trends in each survey stratum 
to evaluate the extent to which long-term bottom tempera-
ture trends or long-term temperature-only CTI expectation 
trends explained long-term observed CTI trends. Because 
the slopes involved observational error in both variables, 
we evaluated slope-slope fit using Model II Major Axis 
regression, as implemented in the ‘lmodel2’ package in R 
(Legendre 2014). 4) Based on the hypothesis that climate 
variability affects community response to long-term change 
(Paaijmans et al. 2013, Vasseur et al. 2014), we also evaluated 
whether temperature variability, depth or latitude helped 
explain the relationship between long-term bottom temper-
ature trends and long-term CTI trends by including them 
as interactions with bottom temperature trends in separate 
multiple linear regression models. We report overall p and r2 
values for each model. 5) To focus specifically on interannual 
variability, we detrended the annual values of bottom tem-
perature, temperature-only CTI expectation, and observed 
CTI in each stratum by fitting a linear regression to each 
timeseries and keeping only the residuals. We then calculated 
the Pearson product-moment correlation between each vari-
able’s annual anomalies in each stratum. We fit a linear mixed 
effects model with CTI anomalies as the response variable, 
bottom temperature anomalies or temperature-only CTI 
expectation anomalies as a fixed effect, and survey nested 
within stratum as random effects. We again compared to a 
null model without bottom temperature or temperature-
only CTI expectation to evaluate statistical significance. We 
also tested for lags between temperature anomalies and CTI 
anomalies by conducting cross-correlation analysis for each 
stratum in each season.

Data deposition

All data is available for download from < http://oceanadapt.
rutgers.edu > and from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.bg08269 > (Flanagan et al. 2018).

Results

Time-averaged CTI expectations and observations

The influence of nonlinear species turnover and the switch 
from subpolar to temperate species around 15°C was evi-
dent in the relationship between bottom temperature and 
our temperature-only CTI expectation (black line, Fig. 3). 
Overall, time-averaged expected CTI values were strongly 
correlated with time-averaged bottom temperatures (linear 
model slope: 1.024 ± 0.032, r2 = 0.96, p < 0.001). However, 
there were notable deviations from this slope at particular 
temperatures. At colder temperatures, the temperature-only 
CTI expectation was higher than bottom temperature, but it 
was lower than bottom temperature at warmer temperatures. 
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With increasing temperature from 0–10°C, CTI expecta-
tions increased in a relatively linear fashion, though with a 
slope less than one. From 10 to 16°C, the slope of expected 
CTI change was greater than one. Above 16°C, expected 
CTI change again had a slope less than one.

Similar to the CTI expectations, time-averaged observed 
CTI in colder environments (< 16°C) had CTI values 
somewhat higher than local bottom temperature, while in 
warmer environments (≥ 20°C), CTI tended to be some-
what lower than bottom temperature (black and gray points, 
Fig. 3). As with expected CTI, observed CTI was also broadly 
correlated with bottom temperature (linear regression: 
slope = 0.710 ± 0.058, r2 = 0.79, p < 0.001). Separating by 
season, fall time-averaged CTI values were closer to time-
averaged bottom temperature values and less variable than 
spring values (spring linear regression slope 0.826 ± 0.120, 
r2 = 0.702, p < 0.001, fall: 0.895 ± 0.051, r2 = 0.940, 
p < 0.001).

Changes in bottom temperature and CTI

Over the period 1990–2014, mean bottom temperature 
increased by 0.28 ± 0.10°C decade–1 in the fall (p < 0.0001) 
and by 0.20 ± 0.11°C decade–1 in the spring (p < 0.001). 
Some of the southern strata also cooled (Fig. 2a, b). In the 
same time period, CTI in individual strata also changed sub-
stantially (Fig. 2c, d), and across all strata showed similar 
trends in the fall (mean 0.25 ± 0.08°C decade–1, p < 0.0001) 
and the spring (mean 0.38 ± 0.09°C decade–1, p < 0.0001). 
The strata with decreasing CTI were primarily found in the 
south, somewhat similar to the spatial distribution of cooling 
temperatures.

In a mixed-effects model fit to biannual CTI and bot-
tom temperature, we found that for every 1°C increase in 
bottom temperature, CTI increased by 0.36°C (95% CI: 
0.34–0.38°C, p < 0.0001). Comparing observations to our 
temperature-only CTI expectations, observed CTI increased 
0.32°C for each 1°C increase in CTI expectation (95% CI: 
0.30–0.34, p < 0.0001).

Long-term trends in bottom temperature and CTI

Long-term bottom temperature and observed CTI trends 
had similar signs and magnitudes in the same strata, though 
there was much unexplained variation. Of the two seasons, 
observed CTI trends were marginally more closely corre-
lated to temperature trends in the spring (slope = 0.626, 
r2 = 0.087, p  0.003) than in the fall (slope = 0.533, 
r2 = 0.054, p  0.038) (Fig. 4, Supplementary material 
Appendix 1 Fig. A3). The temperature-only CTI model pro-
vided little additional explanatory power: observed CTI was 
weakly but significantly correlated to temperature-only CTI 
expectations (spring r2 = 0.066, p  0.022; fall r2 = 0.062, 
p  0.026, Supplementary material Appendix 1 Fig. A5). 
A multiple regression for CTI slope that included bottom 
temperature slope, depth, and their interaction suggested 
that CTI trends were more sensitive to bottom temperature 
trends in shallower strata than in deeper strata (r2 = 0.140, 
p < 0.001). Multiple regressions including latitude and 
variability suggested that CTI trends were more positive 
at higher latitudes (r2 = 0.131, p  0.001) and in strata 
with lower interannual temperature variability (r2 = 0.094, 
p < 0.001).

Interannual changes in bottom temperature and CTI

Individual strata experienced interannual temperature 
ranges from 1.63 to 14.9°C (detrended) over an entire  
same-season time-series (average range across strata: 
5.63°C). Communities experienced fluctuations in 
observed CTI of similar but slightly smaller magnitudes, 
with interannual ranges from 1.13 to 11.5°C (detrended) 
(average 3.82°C).

Within a majority of individual strata (64%), bottom 
temperature and observed CTI anomalies were moder-
ately to strongly correlated (r ≥ 0.3; Supplementary mate-
rial Appendix 1 Fig. A5a, b). Substituting CTI expectations 
for bottom temperature revealed a similar effect size (mean 
r = 0.376, Supplementary material Appendix 1 Fig. A5c, d). 
A mixed effects model supported the conclusion that annual 
anomalies in CTI and temperature were significantly related, 
with CTI deviating by 0.31°C (95% confidence interval 
0.29–0.33) from its long-term trend for each 1°C deviation 
in bottom temperature (p < 0.0001). Cross-correlation anal-
ysis suggested that the majority of communities were most 
correlated with temperature or temperature-only CTI expec-
tations at time lag zero (Supplementary material Appendix 1 
Fig. A6).

Figure  3. Community temperature index (CTI) in relation to 
environmental (bottom) temperature. Each point represents an 
observed stratum mean in either spring (black dots) or fall (gray 
dots) in the testing dataset (1990–2014). The black line represents 
the temperature-only expectation of CTI. The dashed gray line 
indicates what would be a 1:1 correlation between bottom 
temperature and CTI.
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Discussion

Interannual and long-term changes in CTI demonstrate that 
marine communities across the northeast U.S. continen-
tal shelf have changed substantially over the last 25 yr, with 
evidence that they are following changes in temperature. We 
found that temperature effects on community composition 
were most apparent at inter-annual timescales but were 
weaker over decadal trends. Our temperature-only model-
ing approach revealed that CTI responses to temperature will 
often be non-linear and differ from a 1:1 relationship.

Community implications of nonlinear CTI responses

Species’ thermal distributions are rarely symmetrical, which 
suggests that we should expect the probability of presence 
of different species to change at different rates, even over 
relatively narrow temperature ranges. The effects on CTI 
are likely to be strongest in communities with lower species 
richness, where changes in the presence or absence of indi-
vidual species will have a greater impact on the overall CTI 
(Fig. 1). We therefore need a more nuanced expectation for 
the relationship of CTI to temperature, and a 1:1 relation-
ship should often not be the null model, even in the absence 
of factors other than temperature affecting community 
composition. Further examining the effects of richness and 
community composition would be an interesting area of 
future research.

Our temperature-only modeling approach to set CTI 
expectations presents a first step towards a more appropriate 
null model (Fig. 1), and it complements other extensions of 
the CTI method. For example, Bowler and Böhning-Gaese 
(2017) developed a method to separate temperature change 
effects from land use change impacts on CTI. Using non-
linear species thermal distribution curves to calculate CTI 

expectations, we uncovered nonlinear community responses 
to temperature, even in the absence of land use change, 
dispersal limitation, or other factors altering community 
composition. The rate of expected CTI change depended 
on the initial temperature, with slower turnover expected 
with warming from colder starting temperatures, and higher 
turnover expected from warmer starting temperatures.

The step-wise pattern we found in both CTI expectations 
and the observed CTI values qualitatively echoed global pat-
terns of marine community composition (Stuart-Smith et al. 
2015). These global communities fall into thermal guilds, 
with CTI higher than habitat temperatures in cooler environ-
ments (below approximately 18°C) and lower than habitat 
temperatures in environments warmer than approximately 
27°C (Stuart-Smith  et  al. 2015). Similarly, we found that 
expectations of CTI change were relatively linear above and 
below the division between thermal guilds in our dataset 
(15°C, Supplementary material Appendix 1 Fig. A2), though 
with a slope less than 1. At intermediate temperatures, 
communities comprise a mix of subpolar and temperate 
species, and CTI increased rapidly with increasing tempera-
ture as one thermal guild mixed with and replaced another.

Comparing our expected CTI to observed time-averaged 
CTI, we found that the pattern of observed CTI echoed the 
pattern of expected CTI, though with more scatter in the 
relationship, as would be expected with the influence of other 
factors beyond temperature. Dividing the points by season, 
the relationship between fall communities and bottom tem-
perature was much closer to the 1:1 line than the relationship 
for spring communities. We hypothesize that this relation-
ship is due to the nature of seasonal water temperatures and 
the timing of the surveys. The fall survey occurs towards the 
end of the warm summer, after community composition has 
had time to equilibrate to environmental conditions. The 
spring survey, in contrast, occurs during a season of rapid 

Figure 4. Model II major axis linear regression between 1990–2014 trend in bottom temperature and trend in CTI in spring (a) and fall (b) 
communities. Major axis regression was used to account for observational error in both temperature and community variables. The black 
lines indicate major axis regression fits and the gray lines indicate the 95% confidence intervals.
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environmental change and during a time when community 
composition is in transition. A similar process of transient 
dynamics may explain the fact that long-term CTI change 
was less strongly related to temperature in strata with larger 
variation in temperature. Further research on seasonality, 
phenology, and transient dynamics would be a rich area of 
inquiry.

Thermal impacts on community structure

Previous studies have found that species assemblages follow 
local temperature changes through geographic or compo-
sitional shifts, often with some lag (Menéndez  et  al. 2006, 
Lucey and Nye 2010, Bertrand et al. 2011, Devictor et  al. 
2012, Kleisner et al. 2016). On a temperate continental shelf, 
we found that CTI change was associated with temperature 
change, but that the goodness-of-fit depended on temporal 
scale. While we found evidence that interannual commu-
nity composition responded predictably to changes in bot-
tom temperature without temporal lags, the relationship 
between long-term community and environmental changes 
was weaker. The influence of factors other than temperature 
on community composition will tend to increase the scatter 
around the CTI-temperature relationship, reducing both the 
r2 and the slope. We did, however, find that long-term com-
munity change more closely followed temperature change in 
the spring season, possibly reflecting the strong impacts of 
winter temperatures on marine species (Morley et al. 2017) 
and suggesting that future analyses should examine mini-
mum temperatures.

Effects of spatial scale

Some of the differences between our results and prior stud-
ies may arise from differences in spatial and temporal scales. 
A number of other studies reporting long-term CTI trends 
have examined change across regions, countries, or entire 
continents (Bertrand  et  al. 2011, Devictor  et  al. 2012, 
Cheung et al. 2013, Stephens et al. 2016). Climate is often 
a more dominant influence on population and assemblage 
dynamics at large spatial scales, while at finer spatial scales, 
species interactions are thought to more strongly mediate 
community response to climate change (Pascual and Levin 
1999, Walther  et  al. 2002). We note, however, that our 
‘communities’ of analysis had a median area of 2500 km2, 
which were large areas compared to typical communities 
on land, but which represented the smallest areas consis-
tently sampled. Differences in spatial scale may explain why 
previous analyses in the northeast U.S. revealed reasonably 
strong connections between temperature and long-term 
and wide-scale shifts in species distributions or assemblages 
(Lucey and Nye 2010, Nye et al. 2013, Pinsky et al. 2013, 
Kleisner  et  al. 2016). At finer spatial scales, other studies 
have emphasized the role of species interactions in mediat-
ing the impacts of temperature on long-term CTI change, 
including in temperate reef communities (Bates  et  al. 
2014, 2017). Changes in land use and microclimate are 

also important influences on community composition at 
fine spatial scales that may hide the effects of temperature 
change (De Frenne et al. 2013). We look forward to future 
studies of community change across a broader range of 
geographic scales.

Effects of time

In addition, most studies focus on long-term trends 
(Bertrand  et  al. 2011, Devictor  et  al. 2012, Bowler and 
Böhning-Gaese 2017). However, the magnitude of inter-
annual fluctuations in CTI can be larger than long-term 
changes in temperature or CTI, and particularly at fine spa-
tial scales, the variability from these fluctuations may mask 
long-term climate signals. Indeed, by comparing interannual 
and long-term changes, our analysis revealed a higher degree 
of community responsiveness (less scatter in the CTI to 
temperature relationship) on an interannual basis than across 
long-term trends.

The greater role of temperature change at interannual 
timescales may reflect the strong influence of temperature 
on marine ectotherm physiology and the high dispersal 
potential in marine environments (Kinlan and Gaines 2003, 
Pörtner and Knust 2007, Somero 2012). Compared to ter-
restrial ectotherms, marine ectotherm body temperatures 
are largely in thermal equilibrium with their environment 
due to high rates of convection and conduction (Denny 
1993), so temperature changes may therefore quickly drive 
the emigration of individuals or the extinction of popula-
tions. This hypothesis is supported by the close relationship 
between marine species range edges and their thermal toler-
ances (Sunday et al. 2012). In addition, compared to terres-
trial environments, the relative lack of dispersal barriers and 
the ability of ocean currents to carry offspring long distances 
create many opportunities for colonization by new species in 
response to temperature change. In fact, marine species are 
colonizing new territory an order of magnitude faster than 
terrestrial species (Poloczanska  et  al. 2013). These factors 
facilitate rapid increases and decreases in species occurrence 
and may help explain why marine community composition 
responded quickly to interannual temperature changes in 
the northeast U.S. Indeed, as found in other marine sys-
tems, temperature shapes not only distributions, but also 
relative abundance of marine animals (Southward  et  al. 
1995, Day  et  al. 2018). Interannual responses to tem-
perature for individual species were apparent in a similar 
dataset for the southeast U.S., though in a study that did 
not address community composition (Morley et al. 2017). 
The degree to which such rapid responses are general across 
marine ecosystems and the degree to which they appear in 
terrestrial and freshwater ecosystems will be interesting to 
explore further.

Across longer time-scales, however, other factors beyond 
temperature appeared to play a stronger role in shaping 
community composition in the northeast U.S., limiting the 
magnitude of temperature-correlated changes, increasing 
the scatter, and reducing the slope of the CTI–temperature 
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relationship. For example, seasonal changes in circulation, 
including the influx of cool, low-salinity water from the 
Scotian Shelf in the 1990s, may have contributed to strat-
ification in the Gulf of Maine, driven changes in primary 
productivity, and altered the distribution and abundance 
of planktivores, mesopredators, and higher trophic levels 
(Mountain 2004, Stevenson et al. 2004, Friedland and Hare 
2007). In addition, human activities such as harvest, pollu-
tion, or habitat destruction can amplify, mediate, or mask the 
effects of temperature change on species and communities 
(Anderson et al. 2008, Lucey and Nye 2010, Planque et al. 
2010, Bowler and Böhning-Gaese 2017). Fishing pressure 
in Georges Bank from 1970–2000 changed the abundance 
of heavily-exploited species like cod and yellowtail flounder, 
decreasing their spatial and dietary overlap with other spe-
cies, while allowing minimally-exploited species like spiny 
dogfish or winter skate to expand into new areas (Garrison 
and Link 2000). In addition, Nye et al. (2013) showed that, 
depending on the trophic level, the removal of top predators 
in this system works synergistically or antagonistically with 
climate change to alter marine community composition. The 
strong role that fishing has had in changing species abun-
dances and occurrences in this ecosystem over the past few 
decades may explain why long-term CTI and temperature 
trends were weakly correlated, despite much higher interan-
nual correlations.

Regardless of cause, the implications for predicting future 
community change are clear: whether considering idealized 
communities or real-world communities affected by fishing 
and other ecological processes, our expectation should be 
that temperature-driven community change will often occur 
at faster or slower rates than environmental change.

Conclusion

The use of a single, quantitative measure for evaluating and 
predicting community change in response to temperature 
change is an attractive idea. However, interpreting CTI 
in practice and using it to predict future change requires 
a nuanced approach. Because CTI is built up from inher-
ently non-linear species responses to temperature, CTI 
itself will often reveal non-linear responses, particularly in 
communities with relatively few species. The utility of CTI 
stretches across scales of time and space, but the impor-
tance of temperature change relative to other factors in 
driving community change will vary across these scales. In 
the northeast U.S. continental shelf ecosystem, we found 
that temperature was particularly important in driving 
community turnover at fine spatial and short (interannual) 
temporal scales, while previous research has highlighted the 
important role of temperature at wide spatial scales across a 
range of temporal scales. Marine ecosystems may be partic-
ularly sensitive to temperature at a range of temporal scales 
given the physics, physiology, and ecological dynamics of 
these systems.
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